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In a paper published in 1985 (Katriel J., Paldus J., Pauncz R.: Int. J. Quantum Chem. 1985, 28,
181) Paldus and his colleagues considered explicit relations between the permutational sym-
metry and the spin operators for systems of identical particles. The principal concern of this
paper was with particles for which σ = 1/2 but there is some consideration of the case of
particles for which σ = 1. This latter consideration was developed by Katriel (Katriel J.:
J. Mol. Struct. (THEOCHEM) 2001, 547, 1) in a paper honouring Prof. Paldus on the occasion
of his 65th birthday. The present paper attempts a consideration of aspects of permutational
symmetry, not explicitly considered in those two papers, as they affect the interpretation of
the results of molecular structure calculations.
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I shall begin by trying to summarise what is known about bound state solu-
tions to the full molecular problem, nuclear motion included, posed in
terms of the standard Schrödinger equation with just Coulomb forces act-
ing. What I shall argue is that permutational symmetry makes Dirac’s cele-
brated dictum 1929 1 “The fundamental laws necessary for the mathemati-
cal treatment of large parts of physics and the whole of chemistry are thus
fully known, and the difficulty lies only in the fact that application of these
laws leads to equations that are too complex to be solved.” not quite as ob-
viously true as is sometimes supposed.

THE COULOMB HAMILTONIAN

The Coulomb Hamiltonian operator for a system of N electrons and A
atomic nuclei may be written as
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This operator is essentially self-adjoint and bounded from below. It has,
however, a completely continuous spectrum [0,∞]. The fact that it is com-
pletely continuous is because of the centre-of-mass motion and to see any
discrete spectrum this motion must be removed as

H H H= ∇ + ′ = + ′h 2 2

2
( )ξ

ξM
T

T

, (2)

where ξ denotes the three-component cartesian coordinate of the centre-
of-mass and MT is the total mass of the system.

Since the centre-of-mass variable does not enter the potential energy
term, the centre-of-mass motion may be separated off completely so that
the eigenfunctions of H are of the form

T(�)Ψ(t) , (3)

where Ψ(t) is a wave function for the Hamiltonian H′(t) which we will refer
to as the translationally invariant Hamiltonian. The N + A – 1 coordinates ti
are themselves translationally invariant and are typically chosen as a set of
inter-particle distance vectors. The translationally invariant Hamiltonian is
that which we must use when considering the separation of nuclear from
electronic motion.

There are infinitely many possible choices of translationally invariant
coordinates, so that the form of H′ is not determined, but whatever co-
ordinates are chosen the essential point is that all H′ have the same spec-
trum. More detailed accounts of the spectral properties of the Coulomb
Hamiltonian that will be cited below can be found in2,3 and briefly but
fully in4. It is the fact that the Coulomb potential, though unbounded, is
small compared with the kinetic energy, that enables many of results that
follow, to be proved. Interestingly enough, equivalent results in classical
mechanics are not generally provable.

There are various ways in which the spectrum σ(A) of a self-adjoint opera-
tor A may be classified. From the point of view of measure theory the natu-
ral decomposition is into pure point, absolutely continuous and singular
continuous parts. The sets are closed but need not be disjoint. The classifi-
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cation most useful in molecular physics is into discrete and essential parts.
The discrete spectrum σd(A) is the subset of the pure point spectrum that
consists of isolated eigenvalues of finite multiplicity. The essential spec-
trum σess(A) is the complement of the discrete spectrum.

σess(A) = σ(A)\σd(A) (4)

The discrete spectrum and the essential spectrum are, by definition, dis-
joint; however, although the essential spectrum is always closed, the dis-
crete spectrum need not be.

The essential spectrum of the Coulomb Hamiltonian consists of the abso-
lutely continuous spectrum and may contain a portion of the pure point
spectrum. This operator has no singular continuous spectrum. The essential
spectrum describes scattering states of the system while the discrete spec-
trum describes bound states. The bottom of the essential spectrum is lo-
cated by means of the famous Hunzicker–Van Winter–Zhislin (HVZ) theo-
rem. It is obtained by looking at the lowest energy of all possible separated
clusters. It can be shown that the lowest possible energy arises from a two-
cluster decomposition.

The problem is: what is the extent of the discrete spectrum in any partic-
ular case?

For a neutral or positively charged “atomic” system the essential spec-
trum begins at the first ionization energy. The discrete spectrum is infinite
and begins at a negative energy value. This result is independent of the
“nuclear” mass. For the hydrogen atom the discrete spectrum ends where
the energy is zero. The essential spectrum of the hydrogen atom begins at
zero. It is absolutely continuous and does not contain any pure point mem-
bers. It describes the scattering states of a single electron and a nucleus. For
all other atoms the first ionization energy is such that the essential spec-
trum begins at somewhat below zero energy. It contains states describing
the scattering of an electron from a singly ionized atom, two electrons from
a doubly ionized atom and so on. These occur at energies below zero. This
part of the spectrum is often said to describe the bound states in the contin-
uum but is perhaps more accurately designated as describing resonances. At
energies above zero, the spectrum is absolutely continuous and describes
the scattering of the electrons by the nucleus.

For a negatively charged “atomic” system there are, at most, a finite num-
ber of bound states. (H– has just one bound state, see5.)
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The clamped nuclei electronic Hamiltonian is just like an “atomic”
Hamiltonian but the form of the discrete spectrum depends upon the nu-
clear geometry.

Almost nothing is known about “molecular” systems in a way that is
mathematically rigorous.

The origin of the essential spectrum has been located only for the hydro-
gen molecule.

It is known that the hydrogen molecule has at least one bound state. It is
also known that if a system becomes “too” negative (or positive) it has no
bound states. If a trial wave function can be found whose expected energy
is below the start of the essential spectrum, then the system has at least one
bound state.

If the beginning of the essential spectrum is at a point where the two
clusters have opposite charges, then there are an infinite number of bound
states: if the two clusters are neutral then there are only a finite number of
bound states.

The results recorded above were proved with no consideration of any
symmetry restrictions upon the solutions. But subsequent work, especially
by Balslev6, established that the atomic results remained true even after re-
quiring the electronic states to obey the Pauli Principle and to be angular
momentum eigenfunctions.

In extending these considerations to molecules, however, certain tech-
nical problems arise in showing that the HVZ theorem can be maintained
allowing for permutational symmetry. This is because the separating clus-
ters may well contain identical particles. These technical problems arise be-
cause from the N + A variables x defined in the laboratory fixed frame, only
N + A – 1 translationally invariant variables t may be used to define H′(t).
This means that it is not possible to define a set of translationally invariant
coordinates that can be associated each with a nuclear field point, x g

n and
simultaneously, a set each associated with an electronic field point, xi

e as
expressed in the laboratory fixed frame. Such problems of “coordinate mix-
ing” are tricky technical ones but they can be surmounted. The HVZ theo-
rem remains valid allowing for permutational symmetry. The spectrum of
H′(t) is independent of any particular coordinate choice and if one knew
the exact solutions then one could express them in any chosen coordinate
set, to taste. However one has to make a coordinate choice in ignorance
and what these results show is that it is not always possible to keep “elec-
tronic” and “nuclear” variables separate in a uniformly useful way.

Of course the effectiveness of calculations including both electronic and
nuclear motions on small molecular systems in yielding approximate solu-
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tions which appear to be bound, makes us feel easy about future mathemat-
ical progress to establish their existence.

PERMUTATIONAL SYMMETRY

The eigenfunctions of the Coulomb Hamiltonian will provide irreps for the
permutation group S of the system. This group comprises the direct product
of the permutation group SN for the electrons with the permutation groups
S A g

for each set of identical nuclei g comprising Ag members. The physically
realisable irreps of this group are restricted by the requirement that, when
spin is properly incorporated into the eigenfunctions, the eigenfunctions
form a basis only for the totally symmetric representation, if bosons (spin
0, 1, 2 etc.) or of the antisymmetric representation, if fermions (spin 1/2,
3/2, 5/2 etc.). Both of these representations are one-dimensional.

We shall speak of irreps of the invariance groups of the translationally in-
variant Hamiltonian which correspond to physically realisable states as
permutationally allowed. In general such irreps will be many-dimensional
and so we would expect to have to deal with degenerate sets of eigen-
functions in attempting to identify a molecule in the solutions to the trans-
lationally invariant problem.

It should be emphasised that the variables x (t) simply specify field
points, and cannot actually be particle coordinates because of the indistin-
guishability of sets of identical particles. Weyl stresses that, in the case of
sets of identical particles, in addition to supporting the canonical quantum
conditions, the space on which quantum mechanical operators act must be
confined to a sub-space of the full Hilbert space of definite permutational
symmetry. This means that the effect of any operator on a function in this
sub-space must be to produce another function in the subspace. Thus only
operators symmetric in all the coordinates of identical particles can prop-
erly be deployed in the calculation of expectation values that represent
observables.

Weyl discusses this in Section C 9 of Chapter IV of The Theory of Groups
and Quantum Mechanics7. He says of the two-particle case: “Physical quan-
tities have only an objective significance if they depend symmetrically on
the two individuals.” and he then goes on to generalise this conclusion to
the symmetrical form for the quantities constructed from the variables of N
identical particles.

He closes his discussion by looking at the two-electron problem. He says
that although it might be supposed that the electrons as a pair of twins
could be named “Mike” and “Ike”, “it is impossible for either of these indi-
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viduals to retain his identity so that one of them will always be able to say
”I’m Mike" and the other “I’m Ike”. Even in principle one cannot demand
an alibi of an electron! In this way the Leibnizian principle of coincidentia
indiscernibilium holds in quantum mechanics."

This discussion holds for identical particles of any kind that are to be de-
scribed by quantum mechanics and it precludes the specification of, for ex-
ample, the expected value of a particular coordinate chosen from a set de-
scribing many identical particles. Indeed it is obvious that no single opera-
tor from such a set commutes with the Hamiltonian operator and so it can-
not have a definite value as long as the energy remains definite.

If a particular irreducible representation of the symmetric group of degree
N is denoted as [�]N and the conjugate representation as [

~
�]N then, for elec-

trons (or any spin 1/2 particles), the representation of the symmetric group
carried by the spin-eigenfunctions ΘS M kS, , must be one described by a no
more than two-rowed Young diagram, that is [�]N ≡ [λ1, λ2] where

λ1 = N/2 + S , λ2 = N/2 – S . (5)

The representations are independent of the choice of MS and k labels the
rows (columns) of the representation. The dimension of the representation
is given by the Wigner number

f
S N

N S N SS
N = +

+ + −
( ) !

( / )! ( / )!
2 1

2 1 2
. (6)

Assuming that the translationally invariant part of the Coulomb
Hamiltonian for the chosen system has eigenfunctions in the discrete spec-
trum then, among them, there will be a degenerate set that provides a basis
for the representation conjugate to that for the chosen spin-eigenfunctions.
The representation and the conjugate representation have the same dimen-
sion and a basis of space-spin products can be formed which belongs to the
antisymmetric representation of the symmetric group and hence satisfies
the Pauli Principle.

For example, suppose that a ten electron system, such as ammonia, was
being considered and it was hoped to identify a singlet state. In this case
(ignoring for the moment the nuclear variables) one would be looking for a
set of 42 degenerate eigenfunctions of the Coulomb Hamiltonian which
provided a basis for the irrep [5,5] under permutations of electronic vari-
ables. These would be functions of the kind earlier called permutationally
allowed.
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One could provide precisely similar arguments to deal with protons and
so to describe ammonia, for example, one might look for a nuclear spin
doublet arising from the protons and then [�]A would just be [2,1] and one
would be looking for a pair of degenerate functions to provide a basis for
the irrep [2,1] under permutation of the protons. Thus to describe ammonia
in a singlet electronic spin state with a doublet nuclear spin state one
would have to find a degenerate set of 84 eigenfunctions among the
eigenfunctions of the Coulomb Hamiltonian to provide a basis for the
permutationally allowed irrep of SN(10) × SA(3).

This sort of argument could be extended to particles with spins other
than 1/2 and with Bose rather than Fermi statistics and such extensions
were begun in the work of Paldus et al.8 and in the further work by Katriel9

cited earlier. But the argument in these cases becomes quite tricky. It is
much harder in the general case than it is with particles of spin 1/2, to asso-
ciate the spin eigenfunctions with their space parts to produce functions of
appropriate symmetry. Although it is true that the spin wave functions for
particles of spin s can provide a basis for representations of the symmetric
group corresponding to Young diagrams with, at most, only 2s + 1 rows, it
is not in general possible to determine the lengths of these rows simply
from the total S and N values in the problem.

If one moves from ammonia to a larger molecule, for example, the simple
hydrocarbon with empirical formula C8H8, then a host of other problems
begin to emerge. Consider first the 56 electrons. It is easy, though tedious,
to show that the dimension of the permutationally allowed representation
[28,28] for the singlet state, given by the Wigner number f S

N with N = 56
and S = 0, is

53 × 47 × 44 × 43 × 41 × 37 × 35 × 34 × 31 ~− 2.6 × 1014

so that for this rather simple system one can expect the eigenfunctions, if
any, in the discrete spectrum of H′(t) to be very extensively degenerate even
without considering any degeneracies arising from the nuclear variables.

Interestingly enough such a possibility may have troubled Born and
Oppenheimer. In their discussion of Eq. (15) in Part I of the paper they
write Vn as arising from the sum of the electronic energy resulting from a
solution of the clamped-nuclei Hamiltonian for the n-th electronic state
and the classical nuclear repulsion energy at the clamped nuclei geometry
at all values of the nuclear positions and say: “Moreover we assume that Vn
is a non-degenerate eigenvalue. As a matter of fact, this is never the case,
since, because of the indistinguishability of the electrons, the resonance de-

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Permutational Symmetry 663

~

~

~



generacy, discovered by Heisenberg and Dirac, enters; . . .. But since we are
concerned here only with the systematics of the approximation procedure,
we will not consider these degeneracies. Their consideration would require
higher approximations in the secular equation.”

It seems unreasonable, considering possible permutational degeneracies,
to assume that Vn would be a non-degenerate eigenvalue, but even if it
were, or if any degeneracies could really be dealt with by using degenerate
perturbation theory, it will leave behind those degeneracies arising from
rotation-reflection symmetry and it will also leave unconsidered degener-
acy arising from permutational symmetry in the nuclear part of the prob-
lem. To see the sort of problems to which this can lead consider an example
of the way in which isomers are usually accounted for.

The Coulomb Hamiltonian H′(t) for C8H8 is the molecular Hamiltonian
for cubane, cyclooctatetraene, vinylbenzene and many other compounds,
too. Indeed it is even the molecular Hamiltonian for a system with optical
isomers, 3-vinylhexa-1,4-diyne, which has the molecular formula

H
|

CH2=CH–C–C≡CH
|
C≡C–CH3

and in which the central carbon is clearly chiral by the conventional rules.
The irrep of the nuclear permutation group that corresponds to an

antisymmetric singlet state for the protons and a symmetric singlet state for
the carbons is of dimension 14, that which corresponds to a triplet state for
the protons with same carbon spin state is of dimension 28 and so on.

This apparent “confusion” of molecules might not seem too serious a
matter for it might be argued that the different isomers corresponded sim-
ply to different eigenstates of the same Hamiltonian H′, perhaps with differ-
ent nuclear spin states. But in classical structural chemistry, different iso-
mers mean different geometries and it is the idea of a distinct geometry
that is problematic in quantum mechanics, given that the wave function
must belong to a subspace of definite permutational symmetry.

If we write the variables corresponding to the carbon nuclei in C8H8 as
x g

n , g = 1, . . . 8 and those corresponding to the protons as x g + 8
n , g = 1, . . . 8

then a particular CH interparticle distance is

xgh g h
CH n n= x x+ −8 . (7)
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One might be tempted to suppose that the calculation of the expected
values of such interparticle distances with a particular eigenfunction of H′
would determine the geometry. However, we have seen that xgh

CH is not a
proper observable. Its product with a function lying in a particular permu-
tational subspace carries the function outside the subspace and so out of
quantum mechanical utility.

The only possible operator incorporating these distances is the symmetri-
cal sum

xgh
g h

CH

, =
∑

1

8

(8)

and all that can be inferred from its expectation value is that, on average,
all the CH interparticle distances are the same.

It is thus not possible to identify an isomer in terms of a set of distinct
geometrical parameters computed as expectation values. Neither would it
be possible using pair correlation functions for the CH bond because, for
any eigenfunction of the Coulomb Hamiltonian, there would be only one
CH pair correlation function.

This is not to suppose that the average value or the pair correlation func-
tion is the same for all the eigenfunctions of H′ that might be investigated
in a search for isomers, it is simply that what differences there might be,
cannot support the detailed geometrical interpretation which is characteris-
tic of isomer identification in classical chemical structure theory.

It does not seem possible to treat the full molecular Hamiltonian with
permutational invariance properly considered and to get out anything that
a chemist would think of as a molecule. So this was not perhaps the “fun-
damental law” that Dirac was thinking of.

It seems likely from the context that Dirac was actually thinking of chem-
istry as explained using the clamped nuclei Hamiltonian, treating the nu-
clei as identifiable particles. Here one computes energy differences between
various classical isomeric forms of the molecule under consideration and
constructs isomerization paths between them and so on. But if the nuclei
are to be treated as indistinguishable particles, then it must be shown that
one can work back from the position that one is left in at the end of a
clamped nuclei calculation to a solution of the full problem, at least to a
very good approximation. Ideally one would like to be able to construct
from a clamped nuclei start, a very good (anti)symmetrised approximate
wave function for the whole system and to show that classical molecular
structure can be recovered from it as a single term, without any significant
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loss of energy. This would be similar to the sort of thing that is done in
computing inter-molecular forces within the clamped nuclei approxima-
tion. If one considers two interacting molecules then the system of elec-
trons formed by the two combined must be represented by an antisym-
metric wave function. The system is a “super-molecule”. But as the two
molecules are separated, then the representation of the totally antisym-
metric wave function by the product of two individually antisymmetric
wave functions becomes perfectly adequate in energy terms. Thus some
consequences of the full symmetry requirements of the problem become
unimportant from an energetic point of view. If such a separation approach
were effective, then it might be possible too, to account for isomers in the
manner first proposed by Hund to explain chirality10 in terms of long-lived
non-stationary states. Of course if one were looking for Einstein–Podolsky–
Rosen correlation effects, the full symmetry of the problem might well re-
main important in understanding the results of some experiment, even
where it is unimportant energetically.

SEPARATING ELECTRONIC AND NUCLEAR MOTION

Either the classical 1927 work of Born and Oppenheimer11 or the 1950s ap-
proach by Born as presented in App. VIII of Born and Huang12 is supposed
to provide the connection between the clamped nuclei approach and the
full problem. The original work here, however, considers neither the trans-
lational symmetry or any of the permutational symmetries. The Born and
Oppenheimer work uses perturbation theory to expand the wave function
about a minimum in the potential Vn. The aim is to account for the stan-
dard spectroscopic picture of the freely rotating semi-rigid molecule execut-
ing small harmonic vibrations. The work described in the book by Born and
Huang is to formulate the full problem in terms of an electronic potential,
closely similar to Vn, and electron-nuclear coupling terms which, it is
hoped, may often be treated as small. The aim is to account for the transi-
tion state theory of chemical reactions and similar potential-surface based
theories.

To put the original Born–Oppenheimer approach in context, the trans-
lationally invariant part of the Coulomb Hamiltonian H′(t), can be ex-
pressed in terms of two sets of coordinates. One set consists of A – 1
translationally invariant coordinates t i

n is expressed entirely in terms of the
original coordinates of field points associated with nuclei, xi

n :

t xi i ji
j

A

Vn n n=
=
∑ ,

1

i = 1, 2, . . ., A – 1 , (9)
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here Vn is a non-singular matrix whose last column is special, with ele-
ments

V M m M miA i i
i

A
n = =−

=
∑1

1

, , (10)

so that the coordinate X, defined by its last column, is the coordinate of
the centre-of-nuclear mass. The elements in the first A – 1 columns of Vn

each sum to zero to ensure translational invariance. The other set compri-
ses N translationally invariant “electronic” coordinates whose origin is the
centre-of-nuclear mass

t x Xi i
e e= − . (11)

For generality+ the systems that we shall consider must have A ≥ 4. The in-
verse relations are

x X ti i
e e= + (12)

( )x X t Vi j ji
j

A
n n n= + −

=

−

∑ ( ) 1

1

1

(13)

with

( )( )V n − =1 1
Ai

i = 1, 2, . . ., A – 1 , (14)

while the inverse requirement on the remaining rows gives

( )( )V n −

=

=∑ 1

1

0
ji i

i

A

m , j = 1, 2, . . ., A – 1 . (15)

The translationally invariant Coulomb Hamiltonian now takes the form:

H′(t) → He(te) + Hn(tn) + Ven(tn,te) . (16)
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The part of the Hamiltonian which can be associated with electronic mo-
tion is

He(te) = ( ) ( ) ( )− ∇ − ∇ ⋅ ∇ +
= =
∑ ∑h h r r2

2

1

2

1

2

02 2 8
1

µ π
t t t

t
i

i

N

i j
i j

N

j
M

ee e e′ ′
, � e e−=

∑
t ii j

N

, 1

(17)

with

1/µ = 1/m + 1/M , (18)

while the part that can be associated with nuclear motion is

Hn(tn) = ( ) ( )h r r2

1

1 2

02 8
1

′
µ πij

i j
i j

A
i j

iji j

e Z Z

rn
n n

n
∇ ⋅ ∇ +

=

−

∑ t t
t, , ( )� =

∑
1

A

, (19)

where rij(t
n) is defined as

rij(tn) = ( )( ) ( )

/

V Vn n n
kj ki kt− −−





















∑∑ 1 1

2 1 2

α
α

(20)

and the inverse mass matrix is similarly specialised as

1 1

1

/µ ij k ki kj
k

A

m V Vn n n= −

=
∑ , i, j = 1, 2, . . ., A – 1 . (21)

The electronic and nuclear motion are coupled only via a potential term:

Ven(tn,te) = −
′==

∑∑e Z

r
i

ijji

A2

0 114π� ( , )t tn e

n

(22)

and the electron–nucleus distance expression becomes

| | ( )x x t tn e
i j ij k ki j

k

A

r V− ≡ ′ = −−

=

−

∑ n n e1

1

1

. (23)

The full electronic Hamiltonian arising from (16) is

Helec(tn,te) = He(te) + Ven(tn,te) +
e Z Z

r
i j

iji j

A2

0 18π�
′

( ), t n
=

∑ . (24)
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If the tn were assigned values, b say, based upon choices x g
n = ag in the

laboratory-fixed frame, then this would be the translationally invariant
form of the of the electronic Hamiltonian appropriate to a particular clas-
sical nuclear geometry and

Helec(tn,te) → Helec(b,te) . (25)

This Hamiltonian is very like the usual clamped-nuclei one but it is explic-
itly translationally invariant and has an extra term, the second term in
Eq. (17), which is often called either the Hughes–Eckart or the mass polaris-
ation term.

This choice of translationally invariant coordinates is such that the t i
e

transform under a permutation of the xi
e exactly as do the xi

e and remain
unchanged under any permutation of the xi

n . The t i
n are invariant under

any permutation of the xi
e while a permutation of the xi

n produces a trans-
formation among the t i

n alone. It makes He(te) trivially invariant under per-
mutations of the original electronic coordinates and independent of any
particular choice of translationally invariant nuclear coordinates. Similarly
Hn(tn) is independent of any particular choice of translationally invariant
electronic coordinates and is also invariant under any permutation of the
original coordinates of identical nuclei. The interaction operator Ven(tn,te) is
obviously invariant under a permutation of the original electronic coordi-
nates and is also invariant under a permutation of the original coordinates
of identical nuclei.

Although, for a given choice of boundary conditions, the spectrum of the
translationally invariant Hamiltonian is precisely the same with this choice
of coordinates as it would be for any other choice, this one is convenient
for the purposes of the present discussion. However it should be noted that
it would not be convenient for a discussion of the asymptotic problem. As
the system separates, the present coordinate choice describes naturally a
system of bare nuclei with electronic variables still referred to the centre-
of-nuclear mass. This choice of coordinates would not be very useful in
considering the Born–Huang approach to separation because there a poten-
tial surface needs to be described towards the asymptotes, not just locally.
To get asymptotes that naturally describe separate atoms, it is necessary to
refer some electronic origins to different nuclei.

It might now be reasonably hoped that for a particular choice of nuclei
and electrons, there were discrete solutions of the form

H′(t)Ψn(t) = EnΨn(t) (26)
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among which molecules might be identified. Here n is used to denote a set
of quantum numbers: J and M for the angular momentum state: p specify-
ing the parity of the state: r specifying the permutationally allowed irreps
within the groups of identical particles and n to specify a particular energy
value. For a given J such solutions will be degenerate for all 2J + 1 values of
M and the permutational irreps can be, as has been seen, extensively degen-
erate too.

Allowing the nuclear masses to increase without limit, yields

Hf
e (te) = ( )− ∇ +

−= =
∑ ∑h 2

2

1

2

0 12 8
1

m
e

i
i

N

j ii j

N

t
t t

e

e eπ�
′

,

, (27)

while Eq. (19) becomes

Hf
n (tn) =

e Z Z

r
i j

iji j

A2

0 18π�
′

( ), t n
=

∑ (28)

and Eq. (22) remains unchanged as

Vf
en (tn,te) = −

′==
∑∑e Z

r
i

ijj

N

i

A2

0 114π� ( , )t tn e
(29)

and

H′(t) → ′Hf (t) ,

so ′Hf (t) is simply the electronic Hamiltonian (24) without the mass polaris-
ation term.

The passage to infinite nuclear mass, while removing the nuclear kinetic
energy terms, leaves unchanged the form of the potential terms involving
the nuclei. There is, therefore, no intrinsic argument for treating these
terms as other than multiplicative operators involving nuclear coordinates.
There is no inherent reason from this analysis to treat the nuclear coordi-
nates simply as fixed vectors. ′Hf (t), although closely similar to the elec-
tronic Hamiltonian, is quite distinct from Helec(b,te). The domain of the op-
erator ′Hf is L2[R3N ⊕ R3A] while that of Helec(b,te) is restricted to L2[R3N]. This
is because the nuclear repulsion operator simply becomes a number multi-
plier and just determines an origin for the energy. As in the original
clamped nuclei formulation, the choice of the nuclear positions as constant
vectors is an additional choice.
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The equivalent form to Eq. (26) would now be

′ =Hf
f f( ) ( ) ( )t t tn n nΨ ΨE (30)

but this form cannot be a legitimate one since the operator ′Hf contains a
bare Coulomb operator involving the nuclear variables alone with no ki-
netic energy terms at all. The operator cannot, in this context, be regarded
as small. It is unbounded and it has a completely continuous spectrum and
so the operator ′Hf is unbounded and has no discrete spectrum. It is there-
fore not possible to pass from the full problem to the clamped nuclei prob-
lem, simply by treating the nuclear masses as increasing without limit: an
extra choice of fixed nuclear positions has to be made. This analysis is quite
independent of any particular coordinate choice. If fixed nuclear positions
are chosen, there is no problem. Discrete solutions of the Schrödinger equa-
tion associated with Helec(b,te) are possible, whether or not the mass polaris-
ation term is included.

It is the observation that the spectrum of the infinite nuclear mass
Hamiltonian with unclamped nuclei is completely continuous, that means
that Born and Oppenheimer’s original discussion cannot be mathematically
sound, no matter how persuasive it may seem. They illegitimately use ordi-
nary perturbation theory to pursue the clamped nuclei solutions across a
singular divide. In the case of the diatomic molecule Combes, Duclos and
Seiler13 in the 1970s , using singular perturbation theory about the poten-
tial minimum, with the fourth root of the ratio of the electronic to a typical
nuclear mass as the parameter, showed in a mathematically sound way for
the diatomic molecule (the only form that is explicitly considered in the
original paper) that the Born–Oppenheimer approach led to asymptotic so-
lutions for the full problem.

It has not proved possible to consider the polyatomic molecule using sin-
gular perturbation theory. In 1992 however, it was shown by Klein et al.14

that if it is assumed that Eq. (25) has a discrete eigenvalue which has a min-
imum as a function of the t g

n in the neighborhood of some values t g
n = bg

that because of the rotation-inversion invariance, such a minimum exists
on a three-dimensional sub-manifold for all bg such that

bg → Rbg , R ∈ O(3) .

The bg therefore define the geometrical shape of the minimum in the usual
way. If the minimum figure is a plane then the potential well is diffeo-
morphic to SO(3) while if it is non-planar then it is diffeomorphic to O(3)
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and so the well is actually a symmetric double well. In either case, Klein
et al. show that the eigenvalues and eigenfunctions of the full problem can
be obtained as WKB-type expansions to all orders of the expansion parame-
ter, the square root of the ratio of the electronic to a typical nuclear mass.
So it is properly established that the Born–Oppenheimer approach leads to
asymptotic solutions for the full problem, but interestingly usually the po-
tential is a double-well one.

Just as permutational symmetry was not considered in the work of Born
and his collaborators, neither is it considered in the later work. With the
choice of translationally invariant coordinates made above, it is a simple
matter to incorporate electronic permutational symmetry and, without any
diminution of mathematical generality, to require that the electronic part
of the wave function include spin and be properly antisymmetric. On this
understanding, it is perfectly reasonable to assume that Vn, as previously
defined, should not be degenerate. If it seems sufficient to treat the nuclei
as distinguishable particles then it can confidently be asserted that the Born–
Oppenheimer approach offers a perfectly satisfactory account of molecular
wave functions whose energy is close to a minimum in the potential Vn.

At present there has been no direct consideration of the Born and Huang
approach by mathematicians. To remove the translational motion from the
problem and so make possible the formal expansion at the heart of this
method, while still allowing a useful approach to the asymptotes, seems a
vain hope. However, in the time-dependent coherent states (wave-packet)
approach to a freely moving system, it is possible to use the laboratory-
fixed coordinate system and hence to deal with all the asymptotes, while
avoiding problems arising from the pure translational continuum. Among
the first to use this approach on a molecule was Hagedorn15. For diatomics
he was able to show that, in the limit of large nuclear masses, the electrons
move adiabatically and determine an effective potential in which the nu-
clei, treated as identifiable particles, move semi-classically if the potential
surface is isolated. These results do not depend upon there being a mini-
mum in the potential. The results of the Born and Oppenheimer work cited
above would not be valid if there were not a minimum around which the
wave function could be expanded. Hagedorn’s work has not formally been
extended to polyatomic molecules (but see16) though it certainly could be,
by deploying the same sort of techniques that are used by Klein et al.14 in
their work on polyatomics. It seems safe to say that current computational
chemical practice in the treatment of nuclear motion on an isolated poten-
tial surface is well justified for identifiable nuclei. However the approxima-
tion breaks down when the potential surface fails to remain isolated from
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the rest of the electronic energy spectrum. There is so far no mathemati-
cally satisfactory resolution of the general level crossing problem but in a
later paper17 Hagedorn puts some aspects of the work that has been done
here in the context of more chemically-oriented level-crossing ideas.

It still remains, however, to deal with nuclear permutational symmetry
having separated electronic and nuclear motions.

If the nuclei are treated as identifiable particles and a particular set of
nuclear coordinates is chosen so that the nuclear repulsion term becomes a
pure number, the nuclear repulsion term can be dropped from the trans-
lationally invariant formulation of the clamped nuclei Hamiltonian (25) and

Helec(b,te) → Hf
cne (b,te) ,

then solutions of the form

Hf
cne (b,te)Ψcne(b,te) = Ecne(b)Ψcne(b,te) (31)

are possible by making specific choices of the molecular geometry. Such so-
lutions are the ones whose spectral distribution is essentially like that of an
atom. But the symmetry properties of the solutions are diminished from
those of the fuller problem. The only variables in the problem formulated
here are those describing the electrons. The choice of nuclear positions is
merely to specify a parameter set. A particular choice of nuclear coordinates
will specify a geometrical figure F at whose vertices are placed the nuclei.
Any choice of nuclear coordinates which can be obtained from a given
choice by means of a rotation-reflection, will generate the same geometrical
figure. It is easily seen that only rotation-reflections of the electronic vari-
ables which are such that, if they were effected on the parametric geometry,
would leave it invariant, leave Hf

cne invariant. The only other invariance re-
maining is that of the permutation of the electrons.

If the nuclear coordinate choice a generates a geometry F, then any nu-
clear coordinate choice that arises from a permutation of nuclei with the
same charge, will give rise to the same energy Ecne. However two equivalent
geometries so generated generally correspond to a different coordinate
choice. So, regarding Ecne as contributing to the energy at a particular point
on a potential surface expressed in terms of the t g

n is rather too restrictive.
It actually contributes to as many points as are generated by permutations
of particles with identical charges. This point was made at least as long ago
as 1985 by Schmelzer and Murrell18 and developed in a series of papers by
Collins and his group19. If the chosen point corresponds to a minimum on
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the potential surface then it corresponds to a multiple minimum with as
many wells as there are permuted positions.

It should be possible to extend the arguments of Klein et al. to include
invariance under the permutation of identical nuclear variables in a way
analogous to that in which rotational invariance is considered. It would
have to be assumed that the required minimum exists on an appropriate
sub-manifold for all ai such that

ai → Pai , ∀ P ∈ SA .

This requirement would, presumably, result is a multi-well problem to be
solved. Quantum mechanical problems of this form have been studied, at
least in the semi-classical limit by Helffer and Sjöstrand20 for example. The
eigenfunctions of the full Hamiltonian with such a multi-well potential
would, again presumably, be viewable as superpositions of various rota-
tionally invariant forms associated with particular nuclear geometries. But,
on average, there would be only one interparticle distance for like particles.
It should be stressed however, that this is speculative. There do not seem to
be any firm mathematical results to support such a view. However that may
be, such a multiple minimum view is not the one usually taken in spectro-
scopic calculations. Rather a single specific assignment of molecular geome-
try is made in which the nuclei are identified. In the context of the present
discussion this might be considered as a choice of geometry that defines
just one of the permutationally equivalent minima and this is to neglect
some of the permutational symmetry of the problem.

The work by Longuet-Higgins21 offered a justification of this in terms of
the idea of a feasible permutation. If, within the chosen well on the poten-
tial energy surface, a permutation of identical nuclei could be described by
a point group operation on the nuclear framework then such a permutation
was feasible. If such a permutation could be described only by an energeti-
cally demanding dismantling and re-assembling of the the molecular
model, then such a permutation would not be a feasible one. What permu-
tations are feasible depends upon the energy range being considered. Such
non-point group operations as rotation about a single bond are often con-
sidered feasible operations in this context and there is nowadays a pretty
complete theory of the symmetry feasible operations, usually called the
theory of the Nuclear Permutation Inversion Group. A critical account of
this theory and an exposition of others in the same vein, can be found in
the monograph by Ezra22.
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If the analysis given here of the problem is correct, however, these ap-
proaches cannot be considered fully satisfactory. The arguments given
above imply that in order to construct the potential well in terms of which
feasible operations can be defined, it is necessary largely to ignore the
permutational symmetry that feasible operations are invoked to restore at
least in part. There is also something of a logical difficulty in such ap-
proaches. The permutations of the variables of identical particles are simply
mathematical operations in the quantum theory: they do not correspond to
physical operations. However, once the idea of feasibility is associated with
a permutation then some physical effect seems inevitably to be implied. So
it is not clear if the idea of a feasible permutation is equivalent to the more
abstract mathematical idea in the underlying theory. These arguments
count with equal force against the Hund theory10 of isomers.

CONCLUSIONS

It seems to be the case that what is usually done in quantum chemical cal-
culations to interpret molecular spectra can be properly justified mathemat-
ically just so long as identical nuclei are treated as distinguishable particles.
The description of molecular scattering can similarly be justified as long as
the potential is an isolated one. Anything involving potential surface cross-
ings remains problematic, even though much work has been done and is
being done here. It would not seem unreasonable, however, to suggest that
some sort of resolution of the crossing problem might well be arrived at.
But at present there is no satisfactory account of why identical particle
permutational symmetry can be ignored. And there seems no way forward
except by trying to construct trial wave functions of the proper symmetry
and seeing how they relate to the usual ones with incomplete symmetry.
This means considering systems with at least four nuclei and this would be
a quite formidable task. But, who knows, it might be possible to celebrate
Professor Paldus’ 80th birthday with a paper providing just such a justifica-
tion of what we all usually do.
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